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Abstract

A tool for multidimensional variational analysis (divand ) is presented. It allows the in-
terpolation and analysis of observations on curvilinear orthogonal grids in an arbitrary
high dimensional space by minimizing a cost function. This cost function penalizes the
deviation from the observations, the deviation from a first guess and abruptly varying5

fields based on a given correlation length (potentially varying in space and time). Ad-
ditional constraints can be added to this cost function such as an advection constraint
which forces the analysed field to align with the ocean current. The method decou-
ples naturally disconnected areas based on topography and topology. This is useful in
oceanography where disconnected water masses often have different physical proper-10

ties. Individual elements of the a priori and a posteriori error covariance matrix can also
be computed, in particular expected error variances of the analysis. A multidimensional
approach (as opposed to stacking 2-dimensional analysis) has the benefit of providing
a smooth analysis in all dimensions, although the computational cost it increased.

Primal (problem solved in the grid space) and dual formulations (problem solved15

in the observational space) are implemented using either direct solvers (based on
Cholesky factorization) or iterative solvers (conjugate gradient method). In most ap-
plications the primal formulation with the direct solver is the fastest, especially if an
a posteriori error estimate is needed. However, for correlated observation errors the
dual formulation with an iterative solver is more efficient.20

The method is tested by using pseudo observations from a global model. The dis-
tribution of the observations is based on the position of the ARGO floats. The benefit
of the 3-dimensional analysis (longitude, latitude and time) compared to 2-dimensional
analysis (longitude and latitude) and the role of the advection constraint are highlighted.
The tool divand is free software, and is distributed under the terms of the GPL license25

(http://modb.oce.ulg.ac.be/mediawiki/index.php/divand).
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1 Introduction

Deriving a complete gridded field based on a set of observations is a common prob-
lem in oceanography. In situ observations are generally sparse and inhomogeneously
distributed. While satellite observations have typically a better spatial and temporal cov-
erages (but measure only surface data) than in situ data, they present also gaps due to5

e.g. the presence of clouds (in the case of thermal sea-surface temperature and optical
surface properties of the ocean). Since the problem is generally under-determined, if
the gridded field is to be derived from the observations alone, a first guess is intro-
duced. The data analysis problem is also closely related to data assimilation where the
observations are used in combination with a first guess coming from a model.10

Several interpolation methods have been developed and presented in the scientific
literature. Direct linear interpolation of the observations is rarely an option for ocean
observations which are affected by noise and are not necessarily representative (e.g.
a measurement at a specific time might not be representative for a monthly average).
Current interpolation methods take therefore, in one way or the other, the uncertainty15

of the observations into account. Most interpolation methods of uncertain observations
can be classified as methods based on optimal interpolation (including Kriging) and
variational analysis.

For optimal interpolation methods (Gandin, 1965; Bretherton et al., 1976), the er-
ror covariance of the first guess is generally directly specified by analytical functions20

(Robinson, 1996). When satellite or model data are used, this error covariance can
also be specified by its eigenvalues/eigenvectors (Kaplan et al., 1997; Rayner et al.,
2003; Beckers et al., 2006) or by an ensemble (Evensen, 2007). Applications to mul-
tiple spatial and/or temporal dimensions are common (Høyer and She, 2007; Nardelli
et al., 2010) to ensure a continuity of the solution along those dimensions. Analytical25

functions for the error covariance are based generally on the distance between two
given points. However, decoupling water masses separated by land and maintaining at
the same time a spatially smooth fields over the ocean is difficult.
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In variational analysis, a cost function is formulated where every term corresponds
to a desirable property of the field (e.g. close to observations, smooth). The variational
approach is equivalent to the optimal interpolation formulation, but instead of specifying
directly the error covariance of the first guess, the inverse of this matrix is parametrized:
instead of imposing that two adjacent grid cells are correlated to each other, it is re-5

quired that gradients (and higher-order derivatives) are small (Brasseur et al., 1996;
Brankart and Brasseur, 1996). Decoupling water masses separated by land is natural
in variational analysis as it can be included using boundary conditions on the spatial
derivatives. Variational analysis in 3 or 4 dimensions is common in the context of data
assimilation (e.g. Rabier et al., 2000; Dobricic and Pinardi, 2008; Moore et al., 2011b),10

but most of the data analysis applications to grid observations using variational meth-
ods are limited to two dimensions: either two horizontal dimensions (e.g. Troupin et al.,
2010) or vertical transects (e.g. Yari et al., 2012). Three or four dimensional (space and
time) fields are then obtained by assembling individual analysis. Inhomogeneous data
distribution might then lead to spurious abrupt variations along the additional dimen-15

sions, which require ad hoc filtering of the assembled field.
The variational approach is also attractive for problems where it is easier to formulate

physical properties of the underlying field in terms of constraints than in terms of corre-
lation/covariance. For a two-dimensional surface current analysis for example, one can
impose that the horizontal divergence is small (Legler and Navon, 1991; Yaremchuk20

and Sentchev, 2009) by adding a corresponding term to the cost function. This kind of
constraint would be more difficult to implement in interpolation method.

On the other hand, in optimal interpolation one can quite easily derive the error vari-
ance of the analyzed fields which is more difficult but feasible for variational methods
(Troupin et al., 2012). Optimal interpolation in the local approximation can also be quite25

efficiently applied to distributed-memory parallel computing architecture.
The aim of this manuscript is to implement and test a variational analysis program

that can operate in an arbitrary high dimensional space and with a cost function that
can be easily extended with additional constraints. The benefit of this method will be
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assessed in comparison to assembled two-dimensional analyzes using an advection
constraint forcing the gradients of an analysis to be aligned with a given vector field.

The proposed approach is based on the variational inverse method (Brasseur and
Haus, 1991). The method is implemented in the tool DIVA (Data-Interpolating Varia-
tional Analysis) which computes the minimum of the cost function in two dimensions5

using a triangular finite-element mesh (Brasseur et al., 1996; Brankart and Brasseur,
1996, 1998; Troupin et al., 2012). A web interface has also been developed for this
tool (Barth et al., 2010). Then we present an extension to n-dimension which is called
divand . To simplify the testing and implementation in an arbitrarily high dimensional
space, a regular curvilinear mesh is used for the tool divand .10

In Sect. 2, the formulation of the method in n-dimensional space and derive the
analytical kernel functions for an infinitely large domain is introduced. The relationship
between the highest derivative needed in the formulation and the dimension of the
domain is shown. Section 3 presents the different implemented algorithms. Simple
numerical tests are performed in Sect. 4 to show the consistency of the numerical15

results with the analytical solutions of Sect. 2. Implementation details and capabilities
of the tool are given in Sect. 5. The tool is also tested in a realistic configuration to
reconstruct global temperature in Sect. 6.

2 Formulation

Variational inverse methods aim to derive a continuous field which is close to the ob-20

servations and satisfies a series of a priori constraints. In particular, the field should be
“smooth”. It is therefore important to quantify the “smoothness” of a field. While the in-
terpolated field should be close to observations, it should not necessarily pass through
all observations because observations have errors and often do not represent the same
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information. A cost function is formulated which includes these both constraints:

J [ϕ] =
Nd∑
j=1

µj [dj −ϕ(xj )]
2 + ||ϕ−ϕb||

2 (1)

where dj are the measurements at the location xj and µj is their weight, ϕb is a back-
ground estimate of the field. In order to define the norm ||· · ·||, the length-scale Li in ev-
ery domain dimension is introduced. These length-scales form the diagonal elements5

of the matrix L:

L =

L1 0
0 L2

. . .

 (2)

Based on these length-scales, we define the following scaled differential operators
for gradient and Laplacian:

∇̃ = L∇ (3)10

∇̃2 = ∇ · (L2∇) (4)

A scalar product 〈f ,g〉 of two functions, f and g, is defined using the scaled gradient
and Laplacian.

〈f ,g〉 =1
c

∫
D

α0f g+α1(∇̃f ) · (∇̃g)+α2(∇̃2f )(∇̃2g)15

+α3(∇̃∇̃2f ) · (∇̃∇̃2g)+ . . .dx (5)

We note m the highest derivative in this scalar product. The parameter c is a normal-
ization coefficient that will be chosen later. The coefficients αi are generally considered
positive so that the cost function has certainly a finite minimum.20
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The norm used in the background constraint of Eq. (1) is defined using this scalar
product by:

||ϕ||2 = 〈ϕ,ϕ〉 (6)

If field ϕ is discretized on a grid and all elements are grouped into the vector x, the
cost function can be written as:5

J(x) = (x−xb)TB−1(x−xb)+
(
Hx−yo)TR−1 (Hx−yo)+ Jc(x) (7)

where we also regrouped all observations into vector yo and the discretized back-
ground field in vector xb. H is a discretized local interpolation operator allowing to
compare the gridded field with the observations at the data locations.

This cost function is commonly used in optimal interpolation where the matrices B10

and R are the error covariance of the background estimate and of the observations,
respectively. The scalar product in Eq. (5) defines the matrix B and the diagonal matrix
R is composed by the inverse of the data weight 1

µj
. Since this cost function can be

extended by additional constraints, we included the additional term Jc(x) to be specified
later.15

2.1 Kernel

The so-called reproducing kernel K (x,y) associated with Eq. (5) is defined by

〈f ,K 〉 = f (8)

and will be helpful in understanding the covariance structure of B.
If the domain is infinitely large (D =Rn) and the correlation lengths Li are constant20

in all dimensions, we can analytically derive the function K . First we assume that the
correlation lengths Li are all equal to one, and later the more general case with arbitrary
(but constant) values of Li will be derived. The derivation follows the Ph.D. thesis of
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Brasseur (1994) where the kernel is derived for two-dimensional problems. Substituting
the definition of scalar product Eq. (5) in Eq. (8) and by integrating by parts one obtains:

〈f ,K 〉 = 1
c

∫
Rn

α0f (x)K (x,y)+α1
(
∇̃f (x)

)
·
(
∇̃K (x,y)

)
+α2

(
∇̃2f (x)

)(
∇̃2K (x,y)

)
+ . . .dx

=
1
c

∫
Rn

f (x)
[
α0K (x,y)−α1∇̃2K (x,y)+α2∇̃4K (x,y)+ . . .

]
dx5

= f (y)

As this last equation must be true for any function f (x), the expression in brackets
must be equal to the Dirac function (times c):

α0K (x,y)−α1∇̃2K (x,y)+α2∇̃4K (x,y)+ . . . = cδ(x−y)10

Since the kernel is translation invariant, we can set y = 0 without loss of generality.
By applying the Fourier transform, we obtain:

K̂ (k) =
c

α0 +α1k2 +α2k4 + . . .+αmk2m

where K̂ (k) is the Fourier transform of kernel K (x):

K̂ (k) =
∫
Rn

K (x)e−ix·k dx15

The kernel K (x) can thus be found by using the inverse Fourier transform:

K (x) =
1

(2π)n

∫
Rn

K̂ (k)eix·k dk
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In particular, the value of the kernel at x = 0 corresponds to the integral:

K (0) =
2π

n
2

Γ
(n

2

) c
(2π)n

∞∫
0

kn−1

α0 +α1k2 +α2k4 + . . .+αmk2m
dk

where integration variables were transform to n-dimensional polar coordinates and in-
tegration was performed over all angles. The kernel is in fact nothing else than the
correlation function one would use to create B yielding the same result in OI as with5

the varational approach (Wahba and Wendelberger, 1980). We naturally choose the
value of c such that K (0) = 1

1
c
=

2π
n
2

Γ
(n

2

) 1
(2π)n

∞∫
0

kn−1

α0 +α1k2 +α2k4 + . . .+αmk2m
dk

Assuming all αi ≥ 0, the integral at the right-hand side is defined if m> n
2 . This con-

dition links thus the number of dimensions n and the order of the highest derivative10

needed in the formulation. The Fourier transform of the kernel K̂ is a radial function
depending on the norm of the wave number k. The inverse Fourier transform of a ra-
dial function is also a radial function which can be derived with the Hankel transform
(Appendix):

K (r) = (2π)−
n
2 r

2−n
2

∞∫
0

J n−2
2

(kr)k
n−2

2 K̂ (k)k dk (9)15

where Jν(r) is the Bessel function of first kind of order ν. To continue the analytical
derivations we must make assumptions about the coefficients αi . We assume that the
coefficients αi are chosen as binomial coefficients.

αi =
m!

i !(m− i )!
1 ≤ i ≤m
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In this case, the Fourier transform of the kernel (K̂ n,m(k)) for the highest derivative
m and dimension n can be written as,

K̂ n,m(k) =
c

(1+k2)m
.

Using this expression in Eq. (9), the radial part of the kernel K n,m(r) becomes

K n,m(r) = cn,m(2π)−
n
2 r

2−n
2

∞∫
0

J n−2
2

(kr)k
n−2

2
k

(1+k2)m
dk. (10)5

The normalization coefficient is now noted cn,m as it depends on the dimension n and
the order of the highest derivative m. By integrating by parts, we can derive a recursion
relationship relating the kernels with different values of n and m.

K n,m(r) = cn,m (2π)−
n
2

2(1−m)
r

2−n
2

∞∫
0

J n−2
2

(kr)k
n−2

2
d
dk

(
1

(1+k2)m−1

)
dk10

= cn,m (2π)−
n
2

2(m−1)
r

4−n
2

∞∫
0

J n−4
2

(kr)k
n−4

2
k

(1+k2)m−1
dk (11)

=
1

4π(m−1)
cn,m

cn−2,m−1
K n−2,m−1(r) (12)

where in step (11), we used the following equation relating Bessel functions of first kind
of different order:15

d
dx

(
xpJp(x)

)
= xpJp−1(x)
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or
d
dk

(
J n−2

2
(kr)k

n−2
2

)
= rJ n−4

2
(kr)k

n−2
2

Since K n,m(x) is one for x = 0, the normalization coefficients are thus related by:

cn,m = 4π(m−1)cn−2,m−1 (13)

The recurrence relationship therefore shows that it is sufficient to calculate the kernel5

(K n,m) and the normalization coefficients for n = 1 and n = 2. For n = 1, we find the
following solution for the integral in Eq. (10):

K 1,m(r) =
2

Γ(m−1/2)

( r
2

)(m−1/2)
Km−1/2(r)

c1,m =
2
√
πΓ(m)

Γ(m−1/2)10

where Kν(r) is the modified Bessel function of second kind of order ν. For n = 2, the
solution of Eq. (10) is:

K 2,m(r) =
2

Γ(m−1)

( r
2

)(m−1)
Km−1(r)

c2,m = 4π(m−1)
15

Using the recursion relationship Eqs. (12) and (13) with the solution for n = 1 (resp.
n = 2) one can derive the kernel and cn,m for every odd (resp. even) value of n. After
simplifications, it follows that for any n (odd and even) and m, the normalized kernel
K n,m and the corresponding normalization factor cn,m can be written as:

K n,m(r) =
2

Γ(ν)

( r
2

)ν
Kν(r)20

cn,m =
(4π)n/2Γ(m)

Γ(ν)
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with ν =m−n/2. Based on these results, we can finally derive the case for a correlation
length different from one, using the change of variables x→ L−1

x:

K n,m(x) =
2

Γ(ν)

(
|L−1

x|
2

)ν

Kν(|L−1x|)

cn,m =
(4π)n/2Γ(m)|L|

Γ(ν)5

where |L| is the determinant of the diagonal matrix L:

|L| =
n∏

i=1

Li

The kernels and normalization coefficients can be expanded further for particular
values of n and m leading the lines of Tables 1 and 2. Our results agree with the
solution derived by Brasseur et al. (1996) for the case of two dimensions n = 2 and10

m = 2.
In the divand tool a distinction is made between the actual dimension n and the

effective dimension. The effective dimension is the number of dimensions with a non-
zero correlation length. Setting a correlation length to zero decouples the different di-
mensions and is used to emulate the results that one obtains by “stacking” results of15

two-dimensional analysis as it has been done previously (e.g. Troupin et al., 2010).
The normalization coefficient used in this case is based on the effective dimension.
This ensures that one obtains exactly the same results of a stacked 2-D interpolation
by analyzing data in a 3-D domain with a zero correlation length in the third dimension.

2.2 Additional constraints20

In addition to the observation constraint and smoothness constraint, an arbitrary
number of other constraints can be included in divand . Those constraints are
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characterized by the symmetric positive-defined matrix Qi , the matrix Ci and the vec-
tors zi .

Jc(x) =
∑
i

(Cix−zi )
TQ−1

i (Cix−zi )

Those additional constraints can be re-absorbed in the definition of the operator H,
R and y

o:5 
y

o

z1
z2
...

→ yo


H
C1
C2
...

→ H


R 0

Q1
Q2

0
. . .

→ R (14)

With these definitions the cost function has again the familiar form:

J(x) = xTB−1x+ (Hx−yo)TR−1(Hx−yo) (15)

3 Minimization and algorithms

As the cost function is quadratic, one can obtain its minimum analytically. The deriva-10

tion of its minimum is well known (e.g. Courtier et al., 1998) and is included here for
completeness. If xa is the minimum of the cost function J , a small variation δx of xa,
would not change the cost function in the first order of δx. Noting T a transposed matrix
or vector,

δJ = J(xa +δx)− J(xa)15

= δxT(B−1 +HTR−1H)xa −δxTHTR−1yo = 0

As δx is arbitrary, the expression multiplying δxT must be zero. The optimal state x
a

is thus given by:

xa = PHTR−1yo (16)20
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where we have introduced the matrix P.

P−1 = B−1 +HTR−1H (17)

The interpretation of this matrix becomes clear since we can rearrange of the cost
function as:

J(x) = (x−xa)TP−1(x−xa)+ constant (18)5

The matrix P represents thus the error covariance of the analysis x
a (Rabier and

Courtier, 1992; Courtier et al., 1994).

3.1 Primal formulation

The primal formulation of the algorithm follows directly from Eqs. (16) and (17). The
matrices P and B are never formed explicitly and the tool works only with the inverse10

of these matrices noted Pinv and Binv, respectively. In order to give the algorithm in
a compact form close to the mathematical equations, we introduce the backslash op-
erator by:

X = A \ B (19)

which is equivalent to solving the system AX = B for the matrix (or vector) X. With this15

notation, the primal algorithm reads:

Pinv = Binv +HT(R \ H) (20)

xa = Pinv \
(
HT(R \ yo)

)
(21)

Different approaches have been implemented here to solve the analysis equation in20

its primal formulation involving either a direct solver, a factorization or the conjugate
gradient method.
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3.1.1 Direct solver

The solver based on SuiteSparse (Davis, 2004a,b) can be used directly if the matrix
R \ H is sparse. This is in particular the case when R is diagonal. Pinv will then also be
a sparse matrix which can be efficiently stored. This approach is useful when no error
field needs to be computed. The direct solver can also be applied for a non-diagonal R5

but this approach is prohibitive in terms of computational cost and memory.

3.1.2 Factorization

The inverse of the a posteriori error covariance matrix Pinv is factorized in the following
products:

RT
PRP = QT

PPinvQP (22)10

where RP is an upper triangular matrix and QP is a permutation matrix (chosen to
preserve the sparse character of RP). Once the matrix Pinv is factorized, the product
between P and any vector x can be computed efficiently by:

Px = Pinv \ x = QP
(
RP \

(
RT

P \
(
QT

Px
)))

(23)

This approach is useful if the error field is required, since a large number of products15

between P and a given vector must be computed. Determining all elements of P would
be prohibitive, but individual elements (such as the diagonal elements) are computed
by:

Pi j = ei (Pinv \ ej ) (24)

where ei is the i th basis vector. The tool divand returns a matrix-like object allowing20

to compute any element of P or the product of P with a given vector. This latter product
is useful if one wants to derive the expected error of an integrated quantity such as
a transport along a section or any other weighted sum.
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3.1.3 Conjugate gradient method

The conjugate gradient method (Golub and Van Loan, 1996) is commonly used in vari-
ational data assimilation (e.g. Moore et al., 2011a). This method provides an iterative
solution to linear equations

Axa = b, (25)5

where the vector b and the symmetric and positive-defined matrix A are given here by:

b = HT(R \ yo) (26)

Axa = Pinvx
a +HT(R \ (Hxa)) (27)

The conjugate gradient algorithm is applied to solve for xa. Lanczos vectors can be10

saved to compute an approximation of the error of the analysis (Moore et al., 2011b).

3.2 Dual formulation

Using the Sherman–Morrison–Woodbury formula (Golub and Van Loan, 1996), the
solution can also be written in the dual formulation (Courtier, 1997):

xa = BHT(HBHT +R
)−1

yo (28)15

P = B−BHT(HBHT +R
)−1HB (29)

In this formulation, all implemented methods in divand are based on the conjugate
gradient method, to solve iteratively the following equation for y′:

Cy′ = yo (30)20

where C represents a symmetric and positively defined matrix specified in operator
form:

Cy′ = H(Pinv \ (HTy′))+Ry′ (31)
4024
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Once the vector y′ is known, the analysis x
a is obtained by:

xa = Pinv \ (HTy′) (32)

If R is a non-diagonal matrix, one can optionally use a preconditioner based on the
diagonal elements of R noted R′.

M = H
(
Pinv \ HT)+R′; (33)5

The matrix M can be efficiently factorized in sparse matrices:

RT
MRM = QT

MMinvQM (34)

where RM is an upper triangular matrix and QM is a permutation matrix.

3.2.1 Factorization

If the conjugate algorithm requires a large number of iterations, it is useful to factorize10

the matrix Pinv to accelerate the product of P and a vector, which requires solving
a linear system.

RT
PRP = QT

PPinvQP (35)

where, as before, RP is an upper triangular matrix and QP is a permutation matrix. All
products of P times a vector x are computed efficiently by:15

Px = Pinv \ x = QP
(
RP \

(
RT

P \
(
QT

Px
)))

(36)

4 Numerical tests

4.1 Numerical kernel

It has been verified in numerical tests that the code reproduces well the analytical
kernels. The domain is one-dimensional for ν = 1/2, 3/2 and 5/2 and two-dimensional20
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for ν = 1 and 2. Every direction ranges from −10 to 10 and is discretized with 201 grid
points. A hypothetical observation located at the center of the domain is analyzed with
a signal-to-noise ratio of 1 and with a correlation length-scale of 1. Theoretically the
value of the analyzed field should be 1/2 at the center. The radial solution multiplied
by two is compared to the analytical solution of an infinite domain (Fig. 1). In all tests,5

the scaling and structure of the numerical kernels correspond well to the analytical
solutions. For such correspondence, it is necessary that the grid resolution resolves
well the correlation length. Qualitative tests have shown that the numerical kernels
match well the analytical functions as long as the grid spacing is one forth (or less) of
the correlation length.10

The kernels differ by the rate at which they decrease to zero. It is important to con-
sider this aspect when comparing the correlation length from analysis using different
number of derivatives. Table 3 shows the value of r for which the analytical kernels
are 1/2. They can be used as proportionality coefficients to make the kernels more
comparable (Fig. 1).15

The kernel for ν = 1/2 has a discontinuous derivative for r = 0 which makes this func-
tion unfit for practical use. A simple one-dimensional analysis with m = 1 (i.e. ν = 1/2)
illustrates the problem (Fig. 2). As there is no penalty on the second derivative, the
analysis has a discontinuous derivative at every observation location (black dots). Us-
ing higher order derivatives resolves this problem. This example shows also that the20

analyses with higher order kernels (ν = 3/2 and ν = 5/2) are very similar. In these nu-
merical experiments, the correlation length L is the inverse of the values in Table 3. This
problem appears in all configurations where ν = 1/2. In particular also in 3-dimensional
analyses when the highest derivative in the cost function is a Laplacian. This is surpris-
ing because the first derivative is discontinuous despite the fact that the cost function25

penalizes the second derivative. Per default the cost function in divand therefore in-
cludes the derivatives up to 1+n/2 (rounded upwards) to ensure that the analysis has
a continuous derivative.

4026

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/4009/2013/gmdd-6-4009-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/4009/2013/gmdd-6-4009-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 4009–4051, 2013

divand-1.0

A. Barth et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

4.2 Benchmark

The tool divand is written such that it can run on MATLAB and GNU Octave. In gen-
eral, interpreted language tends to be slow on explicit loops. Interpreters like MATLAB
can reduce this performance penalty by using Just-In-Time compilation (which is cur-
rently not available in Octave). Therefore MATLAB tends to be faster on performance5

benchmarks (e.g. Chaves et al., 2006; Leros et al., 2010) than GNU Octave. Explicit
loops are avoided in the tool divand except for the number of dimensions which is
a quite short loop (typically 1 to 4 dimensions).

The run-time performance of divand for MATLAB (version R2012b) and GNU Oc-
tave (version 3.6.4) with two implementations of the BLAS library (either GotoBLAS210

version 1.13 or Intel’s Math Kernel Library (MKL) version 10.1) were tested. The bench-
mark was performed on a Intel Xeon L5420 CPU (using a single core) with 16 GB mem-
ory. The domain is a square and the used correlation length is inversely proportional to
the number of grid points in one dimension.

Observations come from an analytical function and are located at every 5th grid point15

(in the two dimensions). In all cases the correctness of the analyzed field was verified
by comparing the interpolated field to the original analytical function. The benchmark
was repeated 5 times and the median value is shown in Table 4 for the primal algo-
rithm with Cholesky factorization and for the dual algorithm with conjugate gradient
minimization (Table 5). For the primal algorithm, all tested versions perform equally20

well with a slight advantage of Octave for domain sizes of 500×500 and 600×600.
Profiling of the code shows that for the primal algorithm most of the time is spent in
the Cholesky factorization using the library CHOLMOD included in SuiteSparse in both
MATLAB and Octave which explains the similar results.

In general, the dual algorithm is much slower than the primal algorithm with Cholesky25

factorization. However, it should be reminded that the latter would be unpractical
in some cases (in particular with spatially correlated observation errors). The differ-
ence between the different interpreters is more pronounced for the dual case. The
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benchmarks show that MATLAB is faster for small domain sizes (30×30 and 50×50),
while GNU Octave (with GotoBLAS2 and MKL) outperforms MATLAB for larger domain
sizes. For small domain sizes, the preparation of the matrices to invert represents a sig-
nificant fraction of the total run time where GNU Octave tends to be slower due to the
lack of a Just-In-Time compiler. For larger domains, the cost is dominated by matrix5

operations which are faster in Octave for our case. In our benchmark, the Math Kernel
Library is slightly faster in Octave than the GotoBLAS2 library.

5 Implementation

The divand tool is implemented such that it allows analysis in an arbitrary high di-
mensional space. Internally the n-dimensional arrays for e.g. the analyzed field are10

represented as a “flat” vector. To implement the background constraint, the following
basic operations are implemented as sparse matrices:

– differentiation along a given dimension

– grid staggering along a given dimension

– trimming the first and last elements of a given dimension15

All other differential operators (also represented as sparse matrices) are derived as
a product and sum of these basic operations. The grid must be an orthogonal curvilin-
ear grid and some dimensions might be cyclic. The user of the tool can specify addi-
tional constraints of the analyzed fields, for example an advection constraint requiring
that the gradient of the analysis are aligned to a given vector field.20

Ja(φ) =
∫
D

(v · ∇φ)2dD (37)

where v is a vector field with n components. Such a constraint is useful in a geophysi-
cal context to force a field to be close to a stationary (or time dependent) solution of the
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advection equation. The diffusion term is not included as it is generally small for geo-
physical applications and since the background constraint acts similar to a diffusion.

Consistent error calculations are also possible with the tool divand to estimate the
error variance of the analyzed field. This error variance reflects among others the dis-
tribution of the observations, the correlation length and the background variance error.5

However, the accuracy of the error estimate of the analysed field depends crucially on
the validity of the background and observation error covariance.

The tool introduces new matrix objects which implement several matrix operations
(such as multiplication, multiplication by its inverse, extraction of diagonal elements).
These new matrix objects include:10

– a matrix specified by its inverse and potentially factorized (for B and P)

– a matrix specified by an analytical function (for R and Ci )

– a matrix of the form C+BBT, which can be inverted using the Sherman–Morrison–
Woodbury formula (for R)

– a matrix composed by block matrices (for additional constraints)15

– a matrix whose columns are stored on the disc instead of memory, due to memory
limitations (used to save Lanczos vectors).

By adding these new matrix objects one can code the algorithm in a compact way
which is close to the original mathematical formulation. For instance, the product of
the analysis error covariance matrix P and vector x can just be coded as P* x and the20

matrix multiplication method of matrix object P implements the multiplication using the
factorized form of Eq. (23).
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6 Realistic test case

The interpolation was tested using pseudo-observations of temperature coming from
a global ocean model. The results of the year 2007 from the ORCA2 model (Math-
iot et al., 2011) with a spatial varying resolution (generally close to 2 resolution) are
used. Making a reconstruction with model data allows to compare the analyzed field5

to the original model data and to assess the quality of the analysis. The position of
the pseudo-observations are the real position of the ARGO observations from year
2007. Observations are extracted from the daily model results and the analysis targets
monthly means. This mimics the common setup with real observations where mea-
surements are instantaneous while the analyses represent a mean over a given time10

period. Only surface data are reconstructed for every month separately (2-D analysis)
or all 12 months are considered together (3-D analysis). The analysis is compared to
a monthly model climatology for the year 2007 and the RMS difference is calculated.

The central question of this test case is to assess the benefit of a 3-D analysis (longi-
tude, latitude and time) compared to a 2-D analysis (longitude and latitude). Afterward15

different variants of the analysis are also tested, in particular the advection constraint.
Parameters in the analysis (signal-to-noise ratio, spatial and temporal correlation length
and strength of the advection constraint) are optimized to ensure the comparison of
every approach in its best possible configuration. Analyses are compared to a model
climatology obtained by averaging the daily model output.20

6.1 2-D analysis

All observations from the same month are considered as data from the same time
instance. Signal-to-noise ratio and correlation length are optimized by an exhaustive
search of those parameters. The correlation length is chosen here to be identical in
both horizontal dimensions. The RMS difference (space and time average) between25

the analysis and the reference model climatology is minimum for a signal-to-noise ratio
of 14 and a correlation length of 1072 km (Fig. 3). The global RMS error of this analysis
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is 1.1501 ◦C (Table 6). This experiment serves as the baseline for other experiments
and improvements will be expressed as using the mean square skill score using this
experiment as a reference.

Figure 4 (top left panel) shows the RMS error averaged over time for every spatial
grid point. This RMS field reflects essentially the data coverage and areas with poor5

coverage can have RMS errors of 3 ◦C and more. Due to the sparsity of ARGO data
in the coastal area (relative to the near-shore scales of variability), the RMS error is
generally the highest near the coast.

As a variant of the 2-D analysis, the stationary advection is added to the cost
function.10

Ja[ϕ] =
∫
D

(v · ∇ϕ)2dD = a2
s

∫
D

(
u
∂ϕ
∂x

+ v
∂ϕ
∂y

)2

dD (38)

where v = (asu,asv). The vector (u,v) represents the monthly-averaged model cur-
rents. The coefficient as determines how strong the advection constraint should be
enforced. It is instructive to visualize the impact of a point observation without and with
advection constraint. The correction by a point observation is in fact directly related15

to the background error covariance. Figure 5 shows the impact of an observation lo-
cated at 72◦ W and 36.9◦ N (white cross). Without advection constraint, the covariance
is mostly isotropic. The slight deviation from isotropy is due to the proximity of the coast-
line. The location with the largest impact is marked by a white circle. One could expect
that the location with the largest impact coincides with the location of the observation.20

This is actually the case for an observation far away from the coastline. However, near
the coastline the variance increases (due to the boundary conditions imposed in the
smoothness constraint) which explains the relatively high impact near the coast.

With the advection constraint, the covariance is elongated along the path of the
Gulf Stream (downstream and upstream). This is a desirable effect since tracers in the25

ocean tend to be uniform along ocean currents. The variance with advection constraint
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is relatively uniform spatially near the location of the observation and thus the location
of maximum impact coincides with the position of the observation.

The 2-D analysis with advection constraint has thus in total three parameter: signal-
to-noise ratio, spatial correlation and strength of the advection constraint. These pa-
rameters are optimized by the Nelder–Mead algorithm (Nelder and Mead, 1965) by5

minimizing the RMS difference between the analysis and the reference climatology.

6.2 3-D analysis

In a first test, all observations from the same month are again considered coming from
the same time instance. Although this is not necessary for a 3-D analysis, it simplifies
the comparison with the previous 2-D case where the information of the actual day10

is not taken into account. Signal-to-noise ratio, spatial correlation and temporal cor-
relation are optimized using the nonlinear Nelder–Mead minimization as before. The
RMS is minimum with 0.9822 for signal-to-noise ratio of 27, spatial correlation length of
1373 km and a temporal correlation length of 4.9 months. Extending the analysis from
2-D to 3-D improves the skill (mean square skill score) by 27 %.15

For every spatial grid point the time-averaged RMS error is computed (Fig. 4). To
facilitate the comparison with the 2-D case, the difference of these RMS values is also
shown (Fig. 4, bottom panel). Red shows areas where the 3-D analysis is better and in
blue areas the 2-D analysis is more accurate. The RMS error is generally reduced by
the 3-D analysis in coastal areas where few observations are present. However also20

a small degradation is observed in the open ocean. This is attributed to the fact that
signal-to-noise ratio and correlation length are optimized globally. It is probable that
space-dependent parameters (distinguishing for example between open ocean and
near shore conditions) will improve the analysis even more.

In a second test, the actual day of the pseudo-measurements are used in the anal-25

ysis (noted fractional time in Table 6) which improves slightly the analysis. The small
increase of the signal-to-noise ratio is consistent with the fact that by providing the ex-
act date (instead of the month), the observations are more coherent. The relative small

4032

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/4009/2013/gmdd-6-4009-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/4009/2013/gmdd-6-4009-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 4009–4051, 2013

divand-1.0

A. Barth et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

improvement is related to the fact that the optimal temporal correlation is 4.9 months
and larger than one month (the time resolution of the original 3-D experiment).

The analysis is also performed using the advection constraint based on model cur-
rents. Since the time dimension is included, it is possible to use the non-stationary
advection constraint:5

Ja[ϕ] =
∫
D

(v · ∇ϕ)2dD = a2
s

∫
D

(
u
∂ϕ
∂x

+ v
∂ϕ
∂y

+
∂ϕ
∂t

)2

dD (39)

where v = (asu,asv ,as) and as determines the strength of the advection constraint.
Figure 6 shows the impact of a point observation in the 3-D case. Without advection
constraint the covariance is essentially uniform with a small modulation due to the prox-
imity of the coastline. With a time-dependent advection constraint a distinction between10

upstream and downstream is made if two different time steps are considered. The lo-
cation of the observation is more strongly connected to the upstream area of previous
time instances and more strongly related to the downstream area of the following time
instances. The time-dependent covariances with the advection constraint can thus re-
late different time instances taking the advection into account. As in the 2-D case, the15

advection constraint is introduced with a proportionality coefficient as allowing to tune
the strength of this effect. The calibration of this parameter is related to, among others,
the overall significance of advection compared to other processes and the accuracy of
the current field.

The optimal values of the analysis parameters are shown in Table 6. To compare the20

different variants, a skill-score relative to the 2-D case (without advection) has been
computed:

skill score = 1− RMS2

RMS2
2-D

(40)

It follows that inclusion of the advection constraint in the 2-D analysis improves the
skill by 29 %. It is surprising to see that this improvement is of similar amplitude as the25
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improvement obtained by including the time dimension as the later requires the solu-
tion of a 12 times larger system (the number of months). Including the exact date of
a measurement instead of its month leads to only a small improvement. The best anal-
ysis is obtained when using 3-D domain in combination with the advection constraint
leading to an improvement of 44 %. Including the advection constraint has again the5

beneficial effect of increasing the optimal signal-to-noise ratio as the observations are
more coherent along flow lines.

7 Conclusions

A variational analysis tool has been developed and tested with a realistic data distribu-
tion from ARGO, but with pseudo-observations extracted from a model. This allows to10

compare the analysis to model climatology data and to quantitatively compare different
analyses. Parameters are optimized by minimizing the difference between the analysis
and the model climatology. However in practice, a cross-validation data set is needed
for such optimization which ideally should be homogeneously distributed. An improve-
ment with 3-D (longitude, latitude and time) versus 2-D analysis (horizontal only) was15

shown. A relatively larger reduction of the RMS error was also observed by including
the advection constraint (stationary in the 2-D case and time-dependent in the 3-D
case). However, it should be noted that the current fields used here are dynamically
coherent with the tracer fields as they come from the same model. In a realistic setup
with real observations, an improvement similar to the one reported here will require20

quite accurate current fields.
The source code of the tool divand is available from http://modb.oce.ulg.ac.be/

mediawiki/index.php/divand and distributed under the terms of the General Public Li-
cense. The toolbox will also be made available through to the Octave extensions repos-
itory octave-forge.25
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Appendix A

Hankel transform

We note f̂ (k) the Fourier transform of a function f (x):

f̂ (k) =
∫
Rn

e−ikxf (x)dnx (A1)

If the function f (x) is a radial function f (x) = F (r), then its Fourier transform also5

depends only on the module of the wave-number vector f̂ (k) = F̂ (k) where r = |x| and
k = |k|.

The Fourier transform of a radial function in Rn is given in terms of the Hankel trans-
form by (Arfken, 1985):

k
n−2

2 F̂ (k) = (2π)
n
2

∞∫
0

J n−2
2

(kr)r
n−2

2 F (r)r dr (A2)10

where Jν(r) is the Bessel function of first kind of order ν. The inverse Fourier transform
is given by a similar relationship:

r
n−2

2 F (r) = (2π)−
n
2

∞∫
0

J n−2
2

(kr)k
n−2

2 F̂ (k)k dk (A3)
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Table 1. Kernel as a function of non-dimensional radius ρ = |L−1
x| ≥ 0 for different values of the

dimension n and the highest derivative m.

m = 1 m = 2 m = 3

n = 1 e−ρ (1+ρ)e−ρ (1+ρ(1+ρ/3))e−ρ

n = 2 – ρK1(ρ) ρ2

2 K2(ρ)
n = 3 – e−ρ (1+ρ)e−ρ

n = 4 – – ρK1(ρ)
n = 5 – – e−ρ
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Table 2. Normalization coefficient cn,m for different values of the dimension n and the highest
derivative m.

m = 1 m = 2 m = 3

n = 1 2 4 16
3

n = 2 – 4π 8π
n = 3 – 8π 32π
n = 4 – – 32π2

n = 5 – – 64π2
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Table 3. Radial distance where the kernel is 1/2 for different values of ν.

ν rh

1/2 0.69315
1 1.25715
3/2 1.67835
2 2.02700
5/2 2.33026
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Table 4. Run time in seconds for different domain sizes for MATLAB (R2012b) and octave
version 3.6.4 (using GotoBLAS2 or MKL) for the primal algorithm with Cholesky factorization.

MATLAB-R2012b Octave-GotoBLAS2 Octave-MKL

100 0.304 0.415 0.451
200 1.694 1.808 1.692
300 5.235 5.155 5.088
400 7.527 8.104 8.388
500 15.501 13.905 14.115
600 31.457 24.906 25.156
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Table 5. Run time in seconds for different domain sizes for MATLAB (R2012b) and octave
version 3.6.4 (using GotoBLAS2 or MKL) for the dual algorithm.

MATLAB-R2012b Octave-GotoBLAS2 Octave-MKL

30 0.039 0.111 0.145
50 0.122 0.161 0.203
100 3.021 2.194 1.879
200 60.685 42.194 35.367
300 443.830 275.641 230.988
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Table 6. Summary of all experiments with the optimal parameter values.

Experiment λ LX LT advection RMS skill-score
(km) (month) (◦C) (%)

2-D 14.0 1072 – – 1.1501 0
2-D, advection 71.2 1171 – 7.22 0.9696 29
3-D 27.0 1397 4.9 – 0.9822 27
3-D, fractional time 29.5 1373 4.7 – 0.9820 27
3-D, fractional time, 53.8 1477 4.6 1.19 0.8589 44
advection
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Fig. 1. Solid lines show the analytical kernels for different values of ν and the dots
show the numerical kernel (left) and analytical kernels with scaled rh (right).
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Fig. 1. Solid lines show the analytical kernels for different values of ν and the dots show the
numerical kernel (left) and analytical kernels with scaled rh (right).
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Fig. 2. Impact of higher-order derivatives.
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Fig. 2. Impact of higher-order derivatives.
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Fig. 3. RMS difference between the reference climatology and the analysis for
different values of signal-to-noise ratio and correlation length. A non-linear color-
map is used en enhance detail near the minimum.
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Fig. 3. RMS difference between the reference climatology and the analysis for different values
of signal-to-noise ratio and correlation length. A non-linear color-map is used en enhance detail
near the minimum.

4048

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/4009/2013/gmdd-6-4009-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/4009/2013/gmdd-6-4009-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 4009–4051, 2013

divand-1.0

A. Barth et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 4. Top left: RMS difference (averaged over time) between 2D analysis and
the model reference climatology. Top right: idem for 3D. Bottom: difference of
RMS error of the 2D analysis minus the RMS error of the 3D analysis.
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Fig. 4. Top left: RMS difference (averaged over time) between 2-D analysis and the model ref-
erence climatology. Top right: idem for 3-D. Bottom: difference of RMS error of the 2-D analysis
minus the RMS error of the 3-D analysis.
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Fig. 5. 2D case: background error covariance (left panels) relative to the location
marked by a cross, and surrounding grid points and background variance (right
panels). The upper (lower) panels correspond to the case without (with) advection
constraint. The circle indicates the grid point with the highest covariance.

55

Fig. 5. 2-D case: background error covariance (left panels) relative to the location marked by
a cross, and surrounding grid points and background variance (right panels). The upper (lower)
panels correspond to the case without (with) advection constraint. The circle indicates the grid
point with the highest covariance.
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Fig. 6. 3D case: background error covariance without (upper row) and with ad-
vection constraint (lower row) for a data point located at the cross and at month
6.
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Fig. 6. 3-D case: background error covariance without (upper row) and with advection constraint
(lower row) for a data point located at the cross and at month 6.
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